Astrophysics
[Submitted on 12 Apr 2005]
Title:Chandra Observations of the Interacting Galaxies NGC 3395/3396 (Arp 270)
View PDFAbstract: In this paper we present the results of a 20 ks high resolution Chandra X-ray observation of the peculiar galaxy pair NGC 3395/3396, a system at a very early stage of merging, and less evolved than the famous Antennae and Mice merging systems. Previously unpublished ROSAT HRI data are also presented. The point source population and the hot diffuse gas in this system are investigated, and compared with other merging galaxy pairs. 16 X-ray point sources are detected in Arp 270, 7 of which are classified as ULXs (Lx > 10^39 erg/s). From spectral fits and the age of the system it seems likely that these are predominantly high mass X-ray binaries. The diffuse gas emits at a global temperature of ~0.5 keV, consistent with temperatures observed in other interacting systems, and we see no evidence of the starburst-driven hot gaseous outflows seen in more evolved systems such as The Mice and The Antennae. It is likely that these features are absent from Arp 270 as the gas has had insufficient time to break out of the galaxy disks. 32% of the luminosity of Arp 270 arises from the diffuse gas in the system, this is low when compared to later stage merging systems and gives further credence that this is an early stage merger. Comparing the ULX population of Arp 270 to other merging systems, we derive a relationship between the star formation rate of the system, indicated by Lfir, and the number (N(ULX)) and luminosity (Lulx) of its ULX population. We find Nulx proportional to Lfir^0.18 and Lulx proportional to Lfir^0.54. These relationships, coupled with the relation of the point source X-ray luminosity (Lxp) to Lk and Lfir+uv (Colbert et al. 2003), indicate that the ULX sources in an interacting system have contributions from both the old and young stellar populations.
Submission history
From: Nicola Brassington [view email][v1] Tue, 12 Apr 2005 21:43:08 UTC (649 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.