Astrophysics
[Submitted on 13 Apr 2005 (v1), last revised 26 Jun 2005 (this version, v2)]
Title:Total Galaxy Magnitudes and Effective Radii from Petrosian Magnitudes and Radii
View PDFAbstract: Petrosian magnitudes were designed to help with the difficult task of determining a galaxy's total light. Although these magnitudes (taken here as the flux within 2R_P, with the inverted Petrosian index 1/eta(R_P)=0.2) can represent most of an object's flux, they do of course miss the light outside of the Petrosian aperture (2R_P). The size of this flux deficit varies monotonically with the shape of a galaxy's light-profile, i.e., its concentration. In the case of a de Vaucouleurs R^{1/4} profile, the deficit is 0.20 mag; for an R^{1/8} profile this figure rises to 0.50 mag. Here we provide a simple method for recovering total (Sersic) magnitudes from Petrosian magnitudes using only the galaxy concentration (R_90/R_50 or R_80/R_20) within the Petrosian aperture. The corrections hold to the extent that Sersic's model provides a good description of a galaxy's luminosity profile. We show how the concentration can also be used to convert Petrosian radii into effective half-light radii, enabling a robust measure of the mean effective surface brightness. Our technique is applied to the SDSS DR2 Petrosian parameters, yielding good agreement with the total magnitudes, effective radii, and mean effective surface brightnesses obtained from the NYU--VAGC Sersic R^{1/n} fits by Blanton et al. (2005). Although the corrective procedure described here is specifically applicable to the SDSS DR2 and DR3, it is generally applicable to all imaging data where any Petrosian index and concentration can be constructed.
Submission history
From: Alister W. Graham [view email][v1] Wed, 13 Apr 2005 05:28:07 UTC (413 KB)
[v2] Sun, 26 Jun 2005 03:01:48 UTC (418 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.