Astrophysics
[Submitted on 20 Apr 2005]
Title:2dFGRS and SDSS Galaxy Group Density Profiles
View PDFAbstract: We have analysed the distribution of galaxies in groups identified in the largest redshift surveys at the present: the final release of the 2dF Galaxy Redshift Survey and the first release of the Sloan Digital Sky Survey. Our work comprises the study of the galaxy density profiles and the fraction of galaxies per spectral type as a function of the group-centric distance. We have calculated the projected galaxy density profiles of galaxy groups using composite samples in order to increase the statistical significance of the results. Special cares have been taken in order to avoid possible biases in the group identification and the construction of the projected galaxy density profile estimator. The results show that the projected galaxy density profiles obtained for both redshift surveys are in agreement with a projected Navarro, Frenk & White predictions in the range $0.15< r/r_{200}
< 1$, whereas a good fit for the measured profiles in the whole range of $r/r_{200}$ is given by a projected King profile. We have adopted a generalized King profile to fit the measured projected density profiles per spectral type. In order to infer the 3-D galaxy density profiles, we deproject the 2-D density profiles using a deprojection method similar to the developed by Allen & Fabian. From 2-D and 3-D galaxy density profiles we have estimated the corresponding galaxy fractions per spectral type. The 2-D fraction of galaxies computed using the projected profiles show a similar segregation of galaxy spectral types as the obtained by Dom\'ınguez et al. for groups in the early data release of the 2dF Galaxy Redshift Survey. As expected, the trends obtained for the 3-D galaxy fractions show steeper slopes than the observed in the 2-D fractions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.