Astrophysics
[Submitted on 21 Apr 2005 (v1), last revised 20 Jun 2005 (this version, v2)]
Title:Can the initial singularity be detected by cosmological tests?
View PDFAbstract: In the present paper we raise the question whether initial cosmological singularity can be proved from the cosmological tests. The classical general relativity predict the existence of singularity in the past if only some energy conditions are satisfied. On the other hand the latest quantum gravity applications to cosmology suggest of possibility of avoiding the singularity and replace it with the bounce. The distant type Ia supernovae data are used to constraints on bouncing evolutional scenario where square of the Hubble function $H^2$ is given by formulae $H^2=H^2_0[\Omega_{m,0}(1+z)^{m}-\Omega_{n,0}(1+z)^{n}]$, where $\Omega_{m,0}, \Omega_{n,0}>0$ are density parameters and $n>m>0$. We show that the on the base of the SNIa data standard bouncing models can be ruled out on the $4\sigma$ confidence level. If we add the cosmological constant to the standard bouncing model then we obtain as the best-fit that the parameter $\Omega_{n,0}$ is equal zero which means that the SNIa data do not support the bouncing term in the model. The bounce term is statistically insignificant the present epoch. We also demonstrate that BBN offer the possibility of obtaining stringent constraints of the extra term $\Omega_{n,0}$. The other observational test methods like CMB and the age of oldest objects in the Universe are used. We also use the Akaike informative criterion to select a model according to the goodness of fit and we conclude that this term should be ruled out by Occam's razor, which makes that the big bang is favored rather then bouncing scenario.
Submission history
From: Wlodzimierz Godlowski [view email][v1] Thu, 21 Apr 2005 11:20:07 UTC (91 KB)
[v2] Mon, 20 Jun 2005 13:23:50 UTC (92 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.