Astrophysics
[Submitted on 21 Apr 2005]
Title:Testing the massive disk scenario for IRAS 18089-1732
View PDFAbstract: Investigating in more detail the previously suggested massive disk scenario for the High-Mass Protostellar Object IRAS18089-1732, we observed the source in the 860mum band with the Submillimeter Array in various spectral lines and the submm continuum emission at (sub-)arcsecond spatial resolution. Fifty spectral lines from eighteen different species spanning upper level energy states between 17 and 747K were detected. One of the assumed best tracers for massive disks, CH3CN, is optically thick and does not allow a further disk investigation. However, the complex molecule HCOOCH3 appears optically thin and exhibits a velocity shift across the central core perpendicular to the emanating outflow. Assuming equilibrium between centrifugal and gravitational force, the estimated mass for this rotating structure is 16/(sin2(i))Msun (with i the unknown inclination angle), of the same order as the gas mass derived from the continuum emission. A temperature estimate based on the CH3CN(19--18) K-ladder results in ~350K, thus a hot core has already formed in this region. An analysis of the submm continuum emission reveals even at this high spatial resolution only one isolated massive dust core without any detectable companions down to mass limits between 0.2 and 3Msun (depending on the assumed temperature). Potential implications for the massive cluster formation are discussed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.