Astrophysics
[Submitted on 21 Apr 2005 (v1), last revised 25 Apr 2005 (this version, v2)]
Title:Evidence for Granulation and Oscillations in Procyon from Photometry with the WIRE satellite
View PDFAbstract: We report evidence for the granulation signal in the star Procyon A, based on two photometric time series from the star tracker on the WIRE satellite. The power spectra show evidence of excess power around 1 milliHz, consistent with the detection of p-modes reported from radial velocity measurements. We see a significant increase in the noise level below 3 milliHz, which we interpret as the granulation signal. We have made a large set of numerical simulations to constrain the amplitude and timescale of the granulation signal and the amplitude of the oscillations. We find that the timescale for granulation is T(gran) = 750(200) s, the granulation amplitude is 1.8(0.3) times solar, and the amplitude of the p-modes is 8(3) ppm. We found the distribution of peak heights in the observed power spectra to be consistent with that expected from p-mode oscillations. However, the quality of the data is not sufficient to measure the large separation or detect a comb-like structure, as seen in the p-modes of the Sun. Comparison with the recent negative result from the MOST satellite reveal that the MOST data must have an additional noise source that prevented the detection of oscillations.
Submission history
From: Hans Bruntt [view email][v1] Thu, 21 Apr 2005 13:54:58 UTC (506 KB)
[v2] Mon, 25 Apr 2005 08:24:04 UTC (506 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.