Astrophysics
[Submitted on 21 Apr 2005]
Title:From Dusty Filaments to Cores to Stars: An Infrared Extinction Study of Lupus 3
View PDFAbstract: We present deep NIR observations of a dense region of Lupus 3 obtained with ESO's NTT and VLT. Using the NICE method we construct a dust extinction map of the cloud, which reveals embedded globules, a dense filament, and a dense ring structure. We derive dust column densities and masses for the entire cloud and for the individual structures therein. We construct radial extinction profiles for the embedded globules and find a range of profile shapes from relatively shallow profiles for cores with low peak extinctions, to relatively steep profiles for cores with high extinction. Overall the profiles are similar to those of pressure truncated isothermal spheres of varying center-to-edge density contrast. We apply Bonnor-Ebert analysis to compare the density profiles of the embedded cores in a quantitative manner and derive physical parameters such as temperatures, central densities, and external pressures. We examine the stability of the cores and find that two cores are likely stable and two are likely unstable. One of these latter cores is known to harbor an active protostar. Finally, we discuss the relation between an emerging cluster in Lupus 3 and the ring structure identified in our extinction map. Assuming that the ring is the remnant of the core within which the cluster originally formed we estimate that a star formation efficiency of ~ 30% characterized the formation of the small cluster. Our observations of Lupus 3 suggest an intimate link between the structure of a dense core and its state of star forming activity. The dense cores are found to span the entire range of evolution from a stable, starless core of modest central concentration, to an unstable, star-forming core which is highly centrally concentrated, to a significantly disrupted core from which a cluster of young stars is emerging.
Submission history
From: Paula Stella Teixeira [view email][v1] Thu, 21 Apr 2005 21:37:15 UTC (923 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.