Astrophysics
[Submitted on 1 Jun 2005]
Title:Recovering Solar Toroidal Field Dynamics From Sunspot Location Patterns
View PDFAbstract: We analyze both Kitt Peak magnetogram data and MDI continuum intensity sunspot data to search for the following solar toroidal band properties: width in latitude and the existence of a tipping instability (longitudinal m=1 mode) for any time during the solar cycle. To determine the extent which we can recover the toroidal field dynamics, we forward model artificially generated sunspot distributions from subsurface toroidal fields we assigned certain properties. We analyzed two sunspot distribution parameters using MDI and model data: the average latitudinal separation of sunspot pairs as a function of longitudinal separation, and the number of sunspot pairs creating a given angle with respect to the E-W direction. A toroidal band of 10 degrees width with a constant tipping of 5 degrees best fits MDI data early in the solar cycle. A toroidal band of 20 degrees width with a tipping amplitude decreasing in time from 5 to 0 degrees best fits MDI data late in the solar cycle. Model data generated by untipped toroidal bands cannot fit MDI high latitude data and can fit only one parameter at low latitudes. Tipped toroidal bands satisfy chi squared criteria at both high and low latitudes. We conclude this is evidence to reject the null hypothesis - that toroidal bands in the solar tachocline do not experience a tipping instability - in favor of the hypothesis that the toroidal band experiences an m=1 tipping instability. Our finding that the band widens from ~10 degrees early in the solar cycle to ~20 degrees late in the solar cycle may be explained in theory by magnetic drag spreading the toroidal band due to altered flow along the tipped field lines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.