Astrophysics
[Submitted on 22 Jun 2005 (v1), last revised 28 Nov 2005 (this version, v3)]
Title:Gauge-invariant perturbations at second order: multiple scalar fields on large scales
View PDFAbstract: We derive the governing equations for multiple scalar fields minimally coupled to gravity in a flat Friedmann-Robertson-Walker (FRW) background spacetime on large scales. We include scalar perturbations up to second order and write the equations in terms of physically transparent gauge-invariant variables at first and second order. This allows us to write the perturbed Klein-Gordon equation at second order solely in terms of the field fluctuations on flat slices at first and second order.
Submission history
From: Karim . A. Malik [view email][v1] Wed, 22 Jun 2005 17:31:59 UTC (18 KB)
[v2] Mon, 15 Aug 2005 18:42:48 UTC (20 KB)
[v3] Mon, 28 Nov 2005 15:38:32 UTC (20 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.