Astrophysics
[Submitted on 5 Dec 2005 (v1), last revised 15 May 2006 (this version, v2)]
Title:Constraining the reionization history with QSO absorption spectra
View PDFAbstract: We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an Early Reionization Model (ERM) in which the intergalactic medium is reionized by PopIII stars at $z\approx 14$, and (ii) a more standard Late Reionization Model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at $z\approx 6$. From the analysis of current Ly$\alpha$ forest data at $z < 6$, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At $z>6$, however, clear differences start to emerge which are best quantified by the dark gap and peak width distributions. We find that 35 (zero) per cent of the lines of sight within $5.7< z <6.3$ show dark gaps widths $>50$ Angstrom in the rest frame of the QSO if reionization is not (is) complete at $z \gtrsim 6$. Similarly, the ERM predicts peaks of width $\sim 1$ Angstrom in 40 per cent of the lines of sight in the redshift range $6.0-6.6$; in the same range, LRM predicts no peaks of width $>0.8$ Angstrom. We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at $z > 6$. We finally discuss strengths and limitations of our method.
Submission history
From: Simona Gallerani [view email][v1] Mon, 5 Dec 2005 21:14:00 UTC (230 KB)
[v2] Mon, 15 May 2006 15:13:42 UTC (223 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.