Astrophysics
[Submitted on 6 Dec 2005 (v1), last revised 12 Dec 2005 (this version, v2)]
Title:Probing the evolution of the near-IR luminosity function of galaxies to z ~ 3 in the Hubble Deep Field South
View PDFAbstract: [Abridged] We present the rest-frame Js-band and Ks-band luminosity function of a sample of about 300 galaxies selected in the HDF-S at Ks<23 (Vega). We use calibrated photometric redshift together with spectroscopic redshift for 25% of the sample. The sample has allowed to probe the evolution of the LF in the three redshift bins [0;0.8), [0.8;1.9) and [1.9;4) centered at the median redshift z_m ~ [0.6,1.2,3]. The values of alpha we estimate are consistent with the local value and do not show any trend with redshift. We do not see evidence of evolution from z=0 to z_m ~ 0.6 suggesting that the population of local bright galaxies was already formed at z<0.8. On the contrary, we clearly detect an evolution of the LF to z_m ~ 1.2 characterized by a brightening of M* and by a decline of phi*. To z_m ~ 1.2 M* brightens by about 0.4-0.6 mag and phi* decreases by a factor 2-3. This trend persists, even if at a less extent, down to z_m ~ 3 both in the Js-band and in the Ks-band LF. The decline of the number density of bright galaxies seen at z>0.8 suggests that a significant fraction of them increases their stellar mass at 1<z<2-3 and that they underwent a strong evolution in this redshift range. On the other hand, this implies also that a significant fraction of local bright/massive galaxies was already in place at z>3. Thus, our results suggest that the assembly of high-mass galaxies is spread over a large redshift range and that the increase of their stellar mass has been very efficient also at very high redshift at least for a fraction of them.
Submission history
From: Paolo Saracco [view email][v1] Tue, 6 Dec 2005 14:09:48 UTC (434 KB)
[v2] Mon, 12 Dec 2005 11:16:06 UTC (434 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.