Astrophysics
[Submitted on 31 Aug 1995 (v1), last revised 1 Sep 1995 (this version, v2)]
Title:Gamma Ray Pulsars: Emission from Extended Polar Cap Cascades
View PDFAbstract: We have used a Monte Carlo simulation of a Polar Cap (PC) model of gamma-ray pulsars to estimate light curves and phase-resolved spectra for sources whose rotational and magnetic axes are oriented so that only one of the magnetic poles produces emission directed at the Earth. In this Single Polar Cap (SPC) scenario, even sources whose light curves have two distinct peaks (Crab, Vela, Geminga, PSR B1951+32) are due to emission concentrated near the rim of a single PC. If the inclination alpha is comparable to the half-width of the PC gamma-beam, alpha ~ theta_{b}, the peak-to-peak phase separation can have the large values (0.4 - 0.5) observed from these sources. In the model presented here we attribute the observed interpeak emission to pair cascades above the PC interior. Our simulation assumes the physics of conventional PC models, in which the gamma rays are due to photon-pair cascades initiated by curvature radiation from the acceleration of electrons above the PCs. In this work we assume that the acceleration occurs over a finite region which may extend up to several radii above the neutron star surface. We find that the combined effects of moderately enlarged PC dimensions and extended acceleration zones resolve a major difficulty with earlier PC models, namely their small beam widths (and hence small detection probabilities). Our best fits to the observed light curves are obtained from models in which the accelerated electrons have a uniform surface density over the PC interior and a sharp density increase of 3 - 5 near the rim.
Submission history
From: Alice Harding [view email][v1] Thu, 31 Aug 1995 18:52:15 UTC (1 KB) (withdrawn)
[v2] Fri, 1 Sep 1995 13:46:02 UTC (187 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.