Astrophysics
[Submitted on 28 Feb 1996]
Title:The Peculiar Velocity Function of Galaxy Clusters
View PDFAbstract: The peculiar velocity function of clusters of galaxies is determined using an accurate sample of cluster velocities based on Tully-Fisher distances of Sc galaxies (Giovanelli et al 1995b). In contrast with previous results based on samples with considerably larger velocity uncertainties, the observed velocity function does not exhibit a tail of high velocity clusters. The results indicate a low probability of $\lesssim$\,5\% of finding clusters with one-dimensional velocities greater than $\sim$ 600 {\kms}. The root-mean-square one-dimensional cluster velocity is 293$\pm$28 {\kms}. The observed cluster velocity function is compared with expectations from different cosmological models. The absence of a high velocity tail in the observed function is most consistent with a low mass-density ($\Omega \sim$0.3) CDM model, and is inconsistent at $\gtrsim 3 \sigma$ level with $\Omega$= 1.0 CDM and HDM models. The root-mean-square one-dimensional cluster velocities in these models correspond, respectively, to 314, 516, and 632 {\kms} (when convolved with the observational uncertainties). Comparison with the observed RMS cluster velocity of 293$\pm$28 {\kms} further supports the low-density CDM model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.