Astrophysics
[Submitted on 28 Mar 1996 (v1), last revised 1 Jan 1997 (this version, v3)]
Title:Baryons, Dark Matter, and the Jeans Mass in Simulations of Cosmological Structure Formation
View PDFAbstract: We investigate the properties of hybrid gravitational/hydrodynamical simulations, examining both the numerics and the general physical properties of gravitationally driven, hierarchical collapse in a mixed baryonic/dark matter fluid. We demonstrate that, under certain restrictions, such simulations converge with increasing resolution to a consistent solution. The dark matter achieves convergence provided that the relevant scales dominating nonlinear collapse are resolved. If the gas has a minimum temperature (as expected when intergalactic gas is heated by photoionization due to the ultraviolet background) and the corresponding Jeans mass is resolved, then the baryons also converge. However, if there is no minimum baryonic collapse mass or if this scale is not resolved, then the baryon results err in a systematic fashion. In such a case, as resolution is increased the baryon distribution tends toward a higher density, more tightly bound state. We attribute this to the fact that under hierarchical structure formation on all scales there is always an earlier generation of smaller scale collapses, causing shocks which irreversibly alter the state of the baryon gas. In a simulation with finite resolution we miss such earlier generation collapses, unless a physical scale is introduced below which structure formation is suppressed in the baryons. We also find that the baryon/dark matter ratio follows a characteristic pattern, such that collapsed structures possess a baryon enriched core (enriched by factors of 2 or more over the universal average) which is embedded within a dark matter halo, even without accounting for radiative cooling of the gas. The dark matter is unaffected by changing the baryon distribution (at least in the dark matter dominated case investigated here).
Submission history
From: Mike Owen [view email][v1] Thu, 28 Mar 1996 21:03:40 UTC (20 KB)
[v2] Tue, 31 Dec 1996 18:49:58 UTC (1 KB) (withdrawn)
[v3] Wed, 1 Jan 1997 17:41:43 UTC (612 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.