Astrophysics
[Submitted on 29 Mar 1996]
Title:The Speed of Cooling Fronts and the Functional Form of the Dimensionless Viscosity in Accretion Disks
View PDFAbstract: We examine the speed of inward traveling cooling fronts in accretion disks. We show that their speed is determined by the rarefaction wave that precedes them and is approximately $\alpha_F c_{F} (H/r)^q$, where $\alpha_F$ is the dimensionless viscosity, $c_{F}$ is the sound speed, $r$ is the radial coordinate, $H$ is the disk thickness, and all quantities are evaluated at the cooling front. The scaling exponent $q$ lies in the interval $[0,1]$, depending on the slope of the $(T,\Sigma)$ relation in the hot state. For a Kramer's law opacity and $\alpha\propto (H/r)^n$, where $n$ is of order unity, we find that $q\sim 1/2$. This supports the numerical work of Cannizzo, Chen and Livio (1995) and their conclusion that $n\approx3/2$ is necessary to reproduce the exponential decay of luminosity in black hole X-ray binary systems. Our results are insensitive to the structure of the disk outside of the radius where rapid cooling sets in. In particular, the width of the rapid cooling zone is a consequence of the cooling front speed rather than its cause. We conclude that the exponential luminosity decay of cooling disks is probably compatible with the wave-driven dynamo model. It is not compatible with models with separate, constant values of $\alpha$ for the hot and cold states.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.