Astrophysics
[Submitted on 20 May 1996]
Title:Dynamical Effects of Nuclear Rings in Disk Galaxies
View PDFAbstract: We investigate the dynamical response of stellar orbits in a rotating barred galaxy potential to the perturbation by a nuclear gaseous ring. The change in 3D periodic orbit families is examined as the gas accumulates between the inner Lindblad resonances. It is found that the phase space allowable to the x2 family of orbits is substantially increased and a vertical instability strip appears with the growing mass of the ring. A significant distortion of the x1 orbits is observed in the vicinity of the ring, which leads to the intersection between orbits with different values of the Jacobi integral. We also examine the dependence of the orbital response to the eccentricity and alignment of the ring with the bar. Misalignment between an oval ring and a bar can leave observational footprints in the form of twisted near-infrared isophotes in the vicinity of the ring. It is inferred that a massive nuclear ring acts to weaken and dissolve the stellar bar exterior to the ring, whereas only weakly affecting the orbits interior to the inner Lindblad resonances. Consequences for gas evolution in the circumnuclear regions of barred galaxies are discussed as well.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.