Astrophysics
[Submitted on 29 Aug 1996]
Title:Gamma Ray Astronomy with Muons
View PDFAbstract: Although gamma ray showers are muon-poor, they still produce a number of muons sufficient to make the sources observed by GeV and TeV telescopes observable also in muons. For sources with hard gamma ray spectra there is a relative `enhancement' of muons from gamma ray primaries as compared to that from nucleon primaries. All shower gamma rays above the photoproduction threshold contribute to the number of muons $N_\mu$, which is thus proportional to the primary gamma ray energy. With gamma ray energy 50 times higher than the muon energy and a probability of muon production by the gammas of about 1\%, muon detectors can match the detection efficiency of a GeV satellite detector if their effective area is larger by $10^4$. The muons must have enough energy for sufficiently accurate reconstruction of their direction for doing astronomy. These conditions are satisfied by relatively shallow neutrino detectors such as AMANDA and Lake Baikal and by gamma ray detectors like MILAGRO. TeV muons from gamma ray primaries, on the other hand, are rare because they are only produced by higher energy gamma rays whose flux is suppressed by the decreasing flux at the source and by absorption on interstellar light. We show that there is a window of opportunity for muon astronomy with the AMANDA, Lake Baikal and MILAGRO detectors.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.