Astrophysics
[Submitted on 13 Nov 1996]
Title:Non-Gaussian Fluctuations and Primordial Black Holes from Inflation
View PDFAbstract: We explore the role of non-Gaussian fluctuations in primordial black hole (PBH) formation and show that the standard Gaussian assumption, used in all PBH formation papers to date, is not justified. Since large spikes in power are usually associated with flat regions of the inflaton potential, quantum fluctuations become more important in the field dynamics, leading to mode-mode coupling and non-Gaussian statistics. Moreover, PBH production requires several sigma (rare) fluctuations in order to prevent premature matter dominance of the universe, so we are necessarily concerned with distribution tails, where any intrinsic skewness will be especially important. We quantify this argument by using the stochastic slow-roll equation and a relatively simple analytic method to obtain the final distribution of fluctuations. We work out several examples with toy models that produce PBH's, and show that the naive Gaussian assumption can result in errors of many orders of magnitude. For models with spikes in power, our calculations give sharp cut-offs in the probability of large positive fluctuations, meaning that Gaussian distributions would vastly over-produce PBH's. The standard results that link inflation-produced power spectra and PBH number densities must then be reconsidered, since they rely quite heavily on the Gaussian assumption. We point out that since the probability distributions depend on the nature of the potential, it is impossible to obtain results for general models. However, calculating the distribution of fluctuations for any specific model seems to be relatively straightforward, at least in the single inflaton case.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.