Astrophysics
[Submitted on 26 Dec 1996]
Title:An anisotropic illumination model of Seyfert I galaxies
View PDFAbstract: We present a new model of accretion disk where the disk luminosity is entirely due to the reprocessing of hard radiation impinging on the disk. The hard radiation itself is emitted by a hot point source above the disk, that could be physically realized by a strong shock terminating an aborted jet. This hot source contains ultra-relativistic leptons scattering the disk soft photons by Inverse Compton (IC) process. Using simple formula to describe the IC process in an anisotropic photon field, we derive a self-consistent solution in the Newtonian geometry, where the angular distribution of soft and hard radiation, and the radial profile of the disk effective temperature are determined in a univocal way. This offers an alternative picture to the standard accretion disk emission law, reproducing individual spectra and predicting new scaling laws that fit better the observed statistical properties. General relativistic calculations are also carried out. It appears that differences with the Newtonian case are weak, unless the hot source is very close to the black hole.
Submission history
From: Pierre-Olivier Petrucci [view email][v1] Thu, 26 Dec 1996 11:35:08 UTC (53 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.