Astrophysics
[Submitted on 27 Dec 1996]
Title:Survey of Fine-Scale Structure in the Far-Infrared Milky Way
View PDFAbstract: Using the IRAS Infrared Sky Survey Atlas, we have made 60 x 60 deg mosaics of the far-infrared emission in the Milky Way. By applying a median normalizing spatial filter, we were able to eliminate the strong gradient in brightness towards the Galactic midplane. The resulting images reveal a "froth" of superposed filaments, voids, and shells. This fine-scale structure extends all the way down to the Galactic midplane. Moreover, it scales in intensity with the smoothly varying background, independent of latitude, thus indicating that the fine-scale residual emission is co-extensive with the smooth background. We conclude that the fine-scale structure is not merely of local origin, but consists of both nearby and more distant features in the disk. Although we had expected to find morphological evidence for supernova-driven "worms" or "chimneys" rooted in the Galactic plane, our processing shows the FIR fine-scale structure to be more complex (e.g. less coherent and less rooted) as viewed in projection. Analysis of the spatial statistics shows that the FIR fine-scale structure is self-similar with a spatial power-law exponent of -3 and a fractal dimension of 2.5 --- similar behavior to that found in isolated cirrus and molecular clouds. On scales larger than 1.5 deg, the power-law exponent flattens to -2.5, perhaps indicating a change in the characteristic structure. This could be due to different dynamical inputs organizing the small and large-scale structures (e.g. turbulence and diffusion on small scales vs. macroscopic winds and shock fronts on larger scales).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.