Astrophysics
[Submitted on 21 Sep 1998 (v1), last revised 19 Oct 1999 (this version, v2)]
Title:Galactic Gamma Halo by Heavy Neutrino annihilations?
View PDFAbstract: The diffused gamma halo around our Galaxy recently discovered by EGRET could be produced by annihilations of relic neutrinos N (of fourth generation), whose mass is within a narrow range (Mz /2 < M < Mz). Neutrino annihilations in the halo may lead to either ultrarelativistic electron pairs whose inverse Compton Scattering on infrared or optical galactic photons could be the source of the observed GeV gamma rays, or to prompt 100 MeV- 1 GeV photons (due to neutral pion secondaries) born by N - anti N --> Z--> quark pairs reactions. The consequent gamma flux (10 ^(-7)- 10^(-6) cm ^(-2) s^(-1) sr^(-1)) is well comparable to the EGRET observed one and it is also compatible with the narrow window of neutrino mass : 45 GeV < M < 50 GeV recently required to explain the underground DAMA signals. The presence of heavy neutrinos of fourth generation do not contribute much to solve the dark matter problem of the Universe, but it may be easily detectable by outcoming LEP II data.
Submission history
From: Daniele Fargion [view email][v1] Mon, 21 Sep 1998 16:28:57 UTC (12 KB)
[v2] Tue, 19 Oct 1999 18:53:49 UTC (19 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.