Condensed Matter
[Submitted on 23 Apr 2002]
Title:Are Forest Fires Predictable?
View PDFAbstract: Dynamic mean field theory is applied to the problem of forest fires. The starting point is the Monte Carlo simulation in a lattice of million cells. The statistics of the clusters is obtained by means of the Hoshen--Kopelman algorithm. We get the map $p_n\to p_{n+1}$, where $p_n$ is the probability of finding a tree in a cell, and $n$ is the discrete time. We demonstrate that the time evolution of $p$ is chaotic. The arguments are provided by the calculation of the bifurcation diagram and the Lyapunov exponent. The bifurcation diagram reveals several windows of stability, including periodic orbits of length three, five and seven. For smaller lattices, the results of the iteration are in qualitative agreement with the statistics of the forest fires in Canada in years 1970--2000.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.