Condensed Matter > Statistical Mechanics
[Submitted on 27 Apr 2002 (v1), last revised 10 Jun 2004 (this version, v3)]
Title:Does the Boltzmann principle need a dynamical correction?
View PDFAbstract: In an attempt to derive thermodynamics from classical mechanics, an approximate expression for the equilibrium temperature of a finite system has been derived [M. Bianucci, R. Mannella, B. J. West, and P. Grigolini, Phys. Rev. E 51, 3002 (1995)] which differs from the one that follows from the Boltzmann principle S = k log (Omega(E)) via the thermodynamic relation 1/T= dS/dE by additional terms of "dynamical" character, which are argued to correct and generalize the Boltzmann principle for small systems (here Omega(E) is the area of the constant-energy surface). In the present work, the underlying definition of temperature in the Fokker-Planck formalism of Bianucci et al. is investigated and shown to coincide with an approximate form of the equipartition temperature. Its exact form, however, is strictly related to the "volume" entropy S = k log (Phi(E)) via the thermodynamic relation above for systems of any number of degrees of freedom (Phi(E) is the phase space volume enclosed by the constant-energy surface). This observation explains and clarifies the numerical results of Bianucci et al. and shows that a dynamical correction for either the temperature or the entropy is unnecessary, at least within the class of systems considered by those authors. Explicit analytical and numerical results for a particle coupled to a small chain (N~10) of quartic oscillators are also provided to further illustrate these facts.
Submission history
From: Artur B. Adib [view email][v1] Sat, 27 Apr 2002 07:47:04 UTC (38 KB)
[v2] Wed, 14 Aug 2002 04:11:38 UTC (38 KB)
[v3] Thu, 10 Jun 2004 20:25:28 UTC (26 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.