Condensed Matter > Soft Condensed Matter
[Submitted on 25 Jun 2003]
Title:Multidimensional solitons in periodic potentials
View PDFAbstract: The existence of stable solitons in two- and three-dimensional (2D and 3D) media governed by the self-focusing cubic nonlinear Schrödinger equation with a periodic potential is demonstrated by means of the variational approximation (VA) and in direct simulations. The potential stabilizes the solitons against collapse. Direct physical realizations are a Bose-Einstein condensate (BEC) trapped in an optical lattice, and a light beam in a bulk Kerr medium of a photonic-crystal type. In the 2D case, the creation of the soliton in a weak lattice potential is possible if the norm of the field (number of atoms in BEC, or optical power in the Kerr medium) exceeds a threshold value (which is smaller than the critical norm leading to collapse). Both "single-cell" and "multi-cell" solitons are found, which occupy, respectively, one or several cells of the periodic potential, depending on the soliton's norm. Solitons of the former type and their stability are well predicted by VA. Stable 2D vortex solitons are found too.
Submission history
From: Bakhtiyor Baizakov [view email][v1] Wed, 25 Jun 2003 13:45:21 UTC (127 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.