Condensed Matter > Disordered Systems and Neural Networks
[Submitted on 15 Dec 2005]
Title:Dynamical response of the Hodgkin-Huxley model in the high-input regime
View PDFAbstract: The response of the Hodgkin-Huxley neuronal model subjected to stochastic uncorrelated spike trains originating from a large number of inhibitory and excitatory post-synaptic potentials is analyzed in detail. The model is examined in its three fundamental dynamical regimes: silence, bistability and repetitive firing. Its response is characterized in terms of statistical indicators (interspike-interval distributions and their first moments) as well as of dynamical indicators (autocorrelation functions and conditional entropies). In the silent regime, the coexistence of two different coherence resonances is revealed: one occurs at quite low noise and is related to the stimulation of subthreshold oscillations around the rest state; the second one (at intermediate noise variance) is associated with the regularization of the sequence of spikes emitted by the neuron. Bistability in the low noise limit can be interpreted in terms of jumping processes across barriers activated by stochastic fluctuations. In the repetitive firing regime a maximization of incoherence is observed at finite noise variance. Finally, the mechanisms responsible for spike triggering in the various regimes are clearly identified.
Submission history
From: Alessandro Torcini [view email][v1] Thu, 15 Dec 2005 14:03:29 UTC (508 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.