Computer Science > Information Theory
[Submitted on 28 Feb 2007 (v1), last revised 18 Jan 2008 (this version, v2)]
Title:Distributed Power Allocation with Rate Constraints in Gaussian Parallel Interference Channels
View PDFAbstract: This paper considers the minimization of transmit power in Gaussian parallel interference channels, subject to a rate constraint for each user. To derive decentralized solutions that do not require any cooperation among the users, we formulate this power control problem as a (generalized) Nash equilibrium game. We obtain sufficient conditions that guarantee the existence and nonemptiness of the solution set to our problem. Then, to compute the solutions of the game, we propose two distributed algorithms based on the single user waterfilling solution: The \emph{sequential} and the \emph{simultaneous} iterative waterfilling algorithms, wherein the users update their own strategies sequentially and simultaneously, respectively. We derive a unified set of sufficient conditions that guarantee the uniqueness of the solution and global convergence of both algorithms. Our results are applicable to all practical distributed multipoint-to-multipoint interference systems, either wired or wireless, where a quality of service in terms of information rate must be guaranteed for each link.
Submission history
From: Gesualdo Scutari [view email][v1] Wed, 28 Feb 2007 07:33:05 UTC (170 KB)
[v2] Fri, 18 Jan 2008 14:21:28 UTC (76 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.