Computer Science > Information Theory
[Submitted on 1 Mar 2007 (v1), last revised 23 Jan 2008 (this version, v2)]
Title:State Amplification
View PDFAbstract: We consider the problem of transmitting data at rate R over a state dependent channel p(y|x,s) with the state information available at the sender and at the same time conveying the information about the channel state itself to the receiver. The amount of state information that can be learned at the receiver is captured by the mutual information I(S^n; Y^n) between the state sequence S^n and the channel output Y^n. The optimal tradeoff is characterized between the information transmission rate R and the state uncertainty reduction rate \Delta, when the state information is either causally or noncausally available at the sender. This result is closely related and in a sense dual to a recent study by Merhav and Shamai, which solves the problem of masking the state information from the receiver rather than conveying it.
Submission history
From: Young-Han Kim [view email][v1] Thu, 1 Mar 2007 17:59:25 UTC (25 KB)
[v2] Wed, 23 Jan 2008 08:03:30 UTC (77 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.