General Relativity and Quantum Cosmology
[Submitted on 27 Sep 2005 (v1), last revised 14 Nov 2005 (this version, v3)]
Title:Can the Acceleration of Our Universe Be Explained by the Effects of Inhomogeneities?
View PDFAbstract: No. It is simply not plausible that cosmic acceleration could arise within the context of general relativity from a back-reaction effect of inhomogeneities in our universe, without the presence of a cosmological constant or ``dark energy.'' We point out that our universe appears to be described very accurately on all scales by a Newtonianly perturbed FLRW metric. (This assertion is entirely consistent with the fact that we commonly encounter $\delta \rho/\rho > 10^{30}$.) If the universe is accurately described by a Newtonianly perturbed FLRW metric, then the back-reaction of inhomogeneities on the dynamics of the universe is negligible. If not, then it is the burden of an alternative model to account for the observed properties of our universe. We emphasize with concrete examples that it is {\it not} adequate to attempt to justify a model by merely showing that some spatially averaged quantities behave the same way as in FLRW models with acceleration. A quantity representing the ``scale factor'' may ``accelerate'' without there being any physically observable consequences of this acceleration. It also is {\it not} adequate to calculate the second-order stress energy tensor and show that it has a form similar to that of a cosmological constant of the appropriate magnitude. The second-order stress energy tensor is gauge dependent, and if it were large, contributions of higher perturbative order could not be neglected. We attempt to clear up the apparent confusion between the second-order stress energy tensor arising in perturbation theory and the ``effective stress energy tensor'' arising in the ``shortwave approximation.''
Submission history
From: Akihiro Ishibashi [view email][v1] Tue, 27 Sep 2005 22:22:37 UTC (24 KB)
[v2] Mon, 17 Oct 2005 19:11:16 UTC (24 KB)
[v3] Mon, 14 Nov 2005 17:56:46 UTC (25 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.