General Relativity and Quantum Cosmology
[Submitted on 10 Sep 1996]
Title:Formulation for nonaxisymmetric uniformly rotating equilibrium configurations in the second post-Newtonian approximation of general relativity
View PDFAbstract: We present a formalism to obtain equilibrium configurations of uniformly rotating fluid in the second post-Newtonian approximation of general relativity. In our formalism, we need to solve 29 Poisson equations, but their source terms decrease rapidly enough at the external region of the matter(i.e., at worst $O(r^{-4})$). Hence these Poisson equations can be solved accurately as the boundary value problem using standard numerical this http URL formalism will be useful to obtain nonaxisymmetric uniformly rotating equilibrium configurations such as synchronized binary neutron stars just before merging and the Jacobi ellipsoid.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.