High Energy Physics - Phenomenology
[Submitted on 10 Feb 2005]
Title:Black Holes and Massive Elementary Particles in Resummed Quantum Gravity
View PDFAbstract: Einstein's general theory of relativity poses many problems to the quantum theory of point particle fields. Among them is the fate of a massive point particle. Since its rest mass exists entirely within its Schwarzschild radius, in the classical solutions of Einstein's theory, the respective system should be a black hole. We address this issue using exact results in a new approach to quantum gravity based upon well-tested resummation methods in point particle quantum field theory. We show that the classical conclusion is obviated by quantum loop effects. We show that our new approach already passes two theoretical checks with the published literature; for, it reproduces known results on the one-loop correction to the graviton self-energy in scaler matter coupled to Einstein's gravity as analyzed by 't Hooft and Veltman and it is consistent with the asymptotic safety results of Bonnanno and Reuter on the behavior of Newton's constant in the deep Euclidean regime. Indeed, our approach is consistent with the black hole phenomenology of the latter authors, including their results on the final state of the Hawking radiation for an originally massive black hole. Further black hole related phenomenological implications are also discussed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.