High Energy Physics - Phenomenology
[Submitted on 3 Mar 2005 (v1), last revised 8 Jul 2005 (this version, v4)]
Title:Mass Varying Neutrinos in the Sun
View PDFAbstract: In this work we study the phenomenological consequences of the dependence of mass varying neutrinos on the neutrino density in the Sun, which we precisely compute in each point along the neutrino trajectory. We find that a generic characteristic of these scenarios is that they establish a connection between the effective Delta m^2 in the Sun and the absolute neutrino mass scale. This does not lead to any new allowed region in the oscillation parameter space. On the contrary, due to this effect, the description of solar neutrino data worsens for large absolute mass. As a consequence a lower bound on the level of degeneracy can be derived from the combined analysis of the solar and KamLAND data. In particular this implies that the analysis favours normal over inverted mass orderings. These results, in combination with a positive independent determination of the absolute neutrino mass, can be used as a test of these scenarios together with a precise determination of the energy dependence of the survival probability of solar neutrinos, in particular for low energies.
Submission history
From: Marco Cirelli [view email][v1] Thu, 3 Mar 2005 16:59:58 UTC (108 KB)
[v2] Wed, 16 Mar 2005 19:12:38 UTC (108 KB)
[v3] Thu, 17 Mar 2005 13:51:32 UTC (108 KB)
[v4] Fri, 8 Jul 2005 20:07:39 UTC (108 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.