High Energy Physics - Phenomenology
[Submitted on 27 Jul 2005]
Title:Heavy Quark Diffusion from the Lattice
View PDFAbstract: We study the diffusion of heavy quarks in the Quark Gluon Plasma using the Langevin equations of motion and estimate the contribution of the transport peak to the Euclidean current-current correlator. We show that the Euclidean correlator is remarkably insensitive to the heavy quark diffusion coefficient and give a simple physical interpretation of this result using the free streaming Boltzmann equation. However if the diffusion coefficient is smaller than $\sim 1/(\pi T)$, as favored by RHIC phenomenology, the transport contribution should be visible in the Euclidean correlator. We outline a procedure to isolate this contribution.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.