High Energy Physics - Phenomenology
[Submitted on 13 Sep 2005]
Title:Study of perturbative QCD predictions at next-to-leading order and beyond for \pp -> H -> gamma gamma + X
View PDFAbstract: We study predictions from perturbative Quantum Chromodynamics (QCD) for the process pp -> H -> gamma gamma + X. In particular, we compare fully differential calculations at next-to-leading (NLO) and next-to-next-to-leading order (NNLO) in the strong coupling constant to the results obtained with the MC@NLO Monte Carlo (MC) generator, which combines QCD matrix elements at NLO with a parton shower algorithm. Estimates for the systematic uncertainties in the various predictions due to the choice of the renormalization scale and the parton distribution functions are given for the inclusive and accepted cross sections and for the corresponding acceptance corrections, obtained after applying standard selection and acceptance cuts. Furthermore, we compare the distributions for the Higgs signal to those for the irreducible two-photon background, obtained with a NLO MC simulation.
Submission history
From: Andre Georg Holzner [view email][v1] Tue, 13 Sep 2005 12:52:48 UTC (54 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.