High Energy Physics - Phenomenology
[Submitted on 14 Oct 2005]
Title:Relations for Direct CP asymmetries \\in $B\to \rm PP$ and $B\to \rm PV$ decays
View PDFAbstract: The presence of additional strong phase from power corrections and other chirally enhanced terms makes it more difficult to predict direct CP asymmetries in two-body charmless B decays. In this talk, I would like to report on a recent work on QCD Factorisation and Power Corrections in Charmless B Decays. Using the measured branching ratios for $B\to \rm PV$, it is shown that power corrections in charmless B decays are probably large, at least for penguin dominated $\rm PV$ channels. Since the tree-penguin interference responsible for direct CP asymmetries in two-body charmless B decays are related by CKM factors and SU(3) symmetry, we find that, if power corrections other than the chirally enhanced power corrections and annihilation topology were negligible, QCD Factorisation would predict the direct CP asymmetry of $B \to \pi^+ \pi^-$ to be about 3 times larger than that of $B \to \pi^\pm K^\mp$, with opposite sign, in agreement with the latest measurement from Belle. Similar relations are also given for direct CP asymmetries in $B\to\rm PV$ .
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.