High Energy Physics - Phenomenology
[Submitted on 9 Jul 1998 (v1), last revised 28 Sep 1998 (this version, v2)]
Title:Active-active and active-sterile neutrino oscillation solutions to the atmospheric neutrino anomaly
View PDFAbstract: We perform a fit to the full data set corresponding to 33.3 kt-yr of data of the Super-Kamiokande experiment as well as to all other experiments in order to compare the two most likely solutions to the atmospheric neutrino anomaly in terms of oscillations in the $\nu_\mu \to \nu_\tau$ and $\nu_\mu \to \nu_s$ channels. Using state-of-the-art atmospheric neutrino fluxes we have determined the allowed regions of oscillation parameters for both channels. We find that the $\Delta m^2$ values for the active-sterile oscillations (both for positive and negative $\Delta m^2$) are higher than for the $\nu_\mu \to \nu_\tau$ case, and that the increased Super-Kamiokande sample slightly favours $\nu_\mu \to \nu_\tau$ oscillations over oscillations into a sterile species $\nu_s$, $\nu_\mu \to \nu_s$, and disfavours $\nu_\mu \to \nu_e$. We also give the zenith angle distributions predicted for the best fit points in each of the possible oscillation channels. Finally we compare our determinations of the atmospheric neutrino oscillation parameters with the expected sensitivities of future long-baseline experiments K2K, MINOS, ICARUS, OPERA and NOE.
Submission history
From: Orlando L. G. Peres [view email][v1] Thu, 9 Jul 1998 13:00:42 UTC (151 KB)
[v2] Mon, 28 Sep 1998 16:40:31 UTC (181 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.