High Energy Physics - Phenomenology
[Submitted on 23 Jul 1998 (v1), last revised 18 Dec 1998 (this version, v3)]
Title:Physics Implications of Flat Directions in Free Fermionic Superstring Models I: Mass Spectrum and Couplings
View PDFAbstract: From the "top-down" approach we investigate physics implications of the class of D- and F- flat directions formed from non-Abelian singlets which are proven flat to all orders in the nonrenormalizable superpotential, for a prototype quasi-realistic free fermionic string model with the standard model gauge group and three families (CHL5). These flat directions have at least an additional U(1)' unbroken at the string scale. For each flat direction, the complete set of effective mass terms and effective trilinear superpotential terms in the observable sector are computed to all orders in the VEV's of the fields in the flat direction. The "string selection-rules" disallow a large number of couplings allowed by gauge invariance, resulting in a massless spectrum with a large number of exotics, in most cases excluded by experiment, thus signifying a generic flaw of these models. Nevertheless, the resulting trilinear couplings of the massless spectrum possess a number of interesting features which we analyse for two representative flat directions: for the fermion texture; baryon- and lepton-number violating couplings; R-parity breaking; non-canonical mu terms; and the possibility of electroweak and intermediate scale symmetry breaking scenarios for U(1)'. The gauge coupling predictions are obtained in the electroweak scale case. Fermion masses possess t-b and tau-mu universality, with the string scale Yukawa couplings g and $g/\sqrt{2}$, respectively. Fermion textures are present for certain flat directions, but only in the down-quark sector. Baryon- and lepton- number violating couplings can trigger proton-decay, $N-{\bar N}$ oscillations, leptoquark interactions and R-parity violation, leading to the absence of a stable LSP.
Submission history
From: Mirjam Cvetic [view email][v1] Thu, 23 Jul 1998 23:32:44 UTC (39 KB)
[v2] Thu, 12 Nov 1998 20:21:33 UTC (71 KB)
[v3] Fri, 18 Dec 1998 15:21:19 UTC (72 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.