High Energy Physics - Theory
[Submitted on 6 Jan 2005]
Title:Standard-like Models as Type IIB Flux Vacua
View PDFAbstract: We construct new semi-realistic Type IIB flux vacua on $Z_2\times Z_2$ orientifolds with three- and four- Standard Model (SM) families and up to three units of quantized flux. The open-string sector is comprised of magnetized D-branes and is T-dual to supersymmetric intersecting D6-brane constructions. The SM sector contains magnetized D9-branes with negative D3-brane charge contribution. There are large classes of such models and we present explicit constructions for representative ones. In addition to models with one and two units of quantized flux, we also construct the first three- and four-family Standard-like models with supersymmetric fluxes, i.e. comprising three units of quantized flux. Supergravity fluxes are due to the self-dual NS-NS and R-R three-form field strength and they fix the toroidal complex structure moduli and the dilaton. The supersymmetry conditions for the D-brane sector fix in some models all three toroidal Kähler moduli. We also provide examples where toroidal K\" ahler moduli are fixed by strong gauge dynamics on the ``hidden sector'' D7-brane. Most of the models possess Higgs doublet pairs with Yukawa couplings that can generate masses for quarks and leptons. The models have (mainly right-) chiral exotics.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.