High Energy Physics - Theory
[Submitted on 12 Jan 2005 (v1), last revised 18 Apr 2005 (this version, v2)]
Title:Falsifiable predictions from semiclassical quantum gravity
View PDFAbstract: Quantum gravity is studied in a semiclassical approximation and it is found that to first order in the Planck length the effect of quantum gravity is to make the low energy effective spacetime metric energy dependent. The diffeomorphism invariance of the semiclassical theory forbids the appearance of a preferred frame of reference, consequently the local symmetry of this energy-dependent effective metric is a non-linear realization of the Lorentz transformations, which renders the Planck energy observer independent. This gives a form of deformed or doubly special relativity (DSR), previously explored with Magueijo, called the rainbow metric. The general argument determines the sign, but not the exact coefficient of the effect. But it applies in all dimensions with and without supersymmetry, and is, at least to leading order, universal for all matter couplings.
A consequence of DSR realized with an energy dependent effective metric is a helicity independent energy dependence in the speed of light to first order in the Planck length. However, thresholds for Tev photons and GZK protons are unchanged from special relativistic predictions. These predictions of quantum gravity are falsifiable by the upcoming AUGER and GLAST experiments.
Submission history
From: Lee Smolin [view email][v1] Wed, 12 Jan 2005 21:01:07 UTC (17 KB)
[v2] Mon, 18 Apr 2005 09:38:27 UTC (18 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.