High Energy Physics - Theory
[Submitted on 28 Nov 2005]
Title:Semiclassical (Quantum Field Theory) and Quantum (String) de Sitter Regimes: New Results
View PDFAbstract: We compute the quantum string entropy S_s(m, H) from the microscopic string density of states rho_s (m,H) of mass m in de Sitter space-time. We find for high m, a {\bf new} phase transition at the critical string temperature T_s= (1/2 pi k_B)L c^2/alpha', higher than the flat space (Hagedorn) temperature t_s. (L = c/H, the Hubble constant H acts at the transition as producing a smaller string constant alpha' and thus, a higher tension). T_s is the precise quantum dual of the semiclassical (QFT Hawking-Gibbons) de Sitter temperature T_sem = hbar c /(2\pi k_B L). We find a new formula for the full de Sitter entropy S_sem (H), as a function of the usual Bekenstein-Hawking entropy S_sem^(0)(H). For L << l_{Planck}, ie. for low H << c/l_Planck, S_{sem}^{(0)}(H) is the leading term, but for high H near c/l_Planck, a new phase transition operates and the whole entropy S_sem (H) is drastically different from the Bekenstein-Hawking entropy S_sem^(0)(H). We compute the string quantum emission cross section by a black hole in de Sitter (or asymptotically de Sitter) space-time (bhdS). For T_sem ~ bhdS << T_s, (early evaporation stage), it shows the QFT Hawking emission with temperature T_sem ~ bhdS, (semiclassical regime). For T_sem ~ bhdS near T_{s}, it exhibits a phase transition into a string de Sitter state of size L_s = l_s^2/L}, l_s= \sqrt{\hbar alpha'/c), and string de Sitter temperature T_s. Instead of featuring a single pole singularity in the temperature (Carlitz transition), it features a square root branch point (de Vega-Sanchez transition). New bounds on the black hole radius r_g emerge in the bhdS string regime: it can become r_g = L_s/2, or it can reach a more quantum value, r_g = 0.365 l_s.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.