High Energy Physics - Theory
[Submitted on 1 Dec 2005 (v1), last revised 16 Dec 2005 (this version, v2)]
Title:Nonequilibrium quantum fields from first principles
View PDFAbstract: Calculations of nonequilibrium processes become increasingly feasable in quantum field theory from first principles. There has been important progress in our analytical understanding based on 2PI generating functionals. In addition, for the first time direct lattice simulations based on stochastic quantization techniques have been achieved. The quantitative descriptions of characteristic far-from-equilibrium time scales and thermal equilibration in quantum field theory point out new phenomena such as prethermalization. They determine the range of validity of standard transport or semi-classical approaches, on which most of our ideas about nonequilibrium dynamics were based so far. These are crucial ingredients to understand important topical phenomena in high-energy physics related to collision experiments of heavy nuclei, early universe cosmology and complex many-body systems.
Submission history
From: Jurgen Berges [view email][v1] Thu, 1 Dec 2005 13:57:48 UTC (47 KB)
[v2] Fri, 16 Dec 2005 17:06:30 UTC (47 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.