Mathematical Physics
[Submitted on 1 Sep 2003 (v1), last revised 17 Jul 2004 (this version, v4)]
Title:Lamé polynomials, hyperelliptic reductions and Lamé band structure
View PDFAbstract: The band structure of the Lamé equation, viewed as a one-dimensional Schrödinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses Lamé equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hyperelliptic curve, which parametrizes solutions, to an elliptic curve. A general formula for this covering is derived, and is used to reduce certain hyperelliptic integrals to elliptic ones. Degeneracies between band edges, which can occur if the Lamé equation parameters take complex values, are investigated. If the Lamé equation is viewed as a differential equation on an elliptic curve, a formula is conjectured for the number of points in elliptic moduli space (elliptic curve parameter space) at which degeneracies occur. Tables of spectral polynomials and Lamé polynomials, i.e., band edge solutions, are given. A table in the older literature is corrected.
Submission history
From: Robert Maier [view email][v1] Mon, 1 Sep 2003 23:28:45 UTC (60 KB)
[v2] Thu, 17 Jun 2004 00:42:47 UTC (66 KB)
[v3] Sun, 27 Jun 2004 01:28:52 UTC (67 KB)
[v4] Sat, 17 Jul 2004 01:57:03 UTC (67 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.