Mathematics > Geometric Topology
[Submitted on 10 Feb 2000]
Title:Differential 3-knots in 5-space with and without self intersections
View PDFAbstract: Regular homotopy classes of immersions of a 3-sphere in 5-space constitute an infinite cyclic group. The classes containing embeddings form a subgroup of index 24. The obstruction for a generic immersion to be regularly homotopic to an embedding is described in terms of geometric invariants of its self intersection. Geometric properties of self intersections are used to construct two invariants J and St of generic immersions which are analogous to Arnold's invariants of plane curves. We prove that J and St are independent first order invariants and that any first order invariant is a linear combination of these.
As by-products, some invariants of immersions of 3-spheres in 4-space are obtained. Using them, we find restrictions on the topology of self intersections.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.