Mathematics > Quantum Algebra
[Submitted on 11 Feb 2000]
Title:A categorification of the Temperley-Lieb algebra and Schur quotients of U(sl(2)) via projective and Zuckerman functors
View PDFAbstract: We identify the Grothendieck group of certain direct sum of singular blocks of the highest weight category for sl(n) with the n-th tensor power of the fundamental (two-dimensional) sl(2)-module. The action of U(sl(2)) is given by projective functors and the commuting action of the Temperley-Lieb algebra by Zuckerman functors. Indecomposable projective functors correspond to Lusztig canonical basis in U(sl(2)). In the dual realization the n-th tensor power of the fundamental representation is identified with a direct sum of parabolic blocks of the highest weight category. Translation across the wall functors act as generators of the Temperley-Lieb algebra while Zuckerman functors act as generators of U(sl(2)).
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.