Mathematics > Symplectic Geometry
[Submitted on 24 Dec 2002 (v1), last revised 9 Dec 2003 (this version, v5)]
Title:Spectral invariants and length minimizing property of Hamiltonian paths
View PDFAbstract: In this paper we provide a criterion for the quasi-autonomous Hamiltonian path (``Hofer's geodesic'') on arbitrary closed symplectic manifolds $(M,\omega)$ to be length minimizing in its homotopy class in terms of the spectral invariants $\rho(G;1)$ that the author has recently constructed (math.SG/0206092). As an application, we prove that any autonomous Hamiltonian path on arbitrary closed symplectic manifolds is length minimizing in {\it its homotopy class} with fixed ends, when it has no contractible periodic orbits {\it of period one}, has a maximum and a minimum point which are generically under-twisted and all of its critical points are nondegenerate in the Floer theoretic sense. This is a sequel to the papers math.SG/0104243 and math.SG/0206092.
Submission history
From: Yong-Geun Oh [view email][v1] Tue, 24 Dec 2002 19:49:54 UTC (13 KB)
[v2] Thu, 26 Dec 2002 17:43:50 UTC (14 KB)
[v3] Tue, 7 Jan 2003 12:18:02 UTC (17 KB)
[v4] Wed, 8 Jan 2003 11:06:36 UTC (17 KB)
[v5] Tue, 9 Dec 2003 17:31:31 UTC (15 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.