Mathematics > Classical Analysis and ODEs
[Submitted on 16 Jun 2003 (v1), last revised 1 Jul 2003 (this version, v2)]
Title:Q-operator and factorised separation chain for Jack polynomials
View PDFAbstract: Applying Baxter's method of the Q-operator to the set of Sekiguchi's commuting partial differential operators we show that Jack polynomials P(x_1,...,x_n) are eigenfunctions of a one-parameter family of integral operators Q_z. The operators Q_z are expressed in terms of the Dirichlet-Liouville n-dimensional beta integral. From a composition of n operators Q_{z_k} we construct an integral operator S_n factorising Jack polynomials into products of hypergeometric polynomials of one variable. The operator S_n admits a factorisation described in terms of restricted Jack polynomials P(x_1,...,x_k,1,...,1). Using the operator Q_z for z=0 we give a simple derivation of a previously known integral representation for Jack polynomials.
Submission history
From: Vadim B. Kuznetsov [view email][v1] Mon, 16 Jun 2003 18:51:49 UTC (29 KB)
[v2] Tue, 1 Jul 2003 11:59:09 UTC (29 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.