Mathematics > Number Theory
[Submitted on 12 Sep 2003 (v1), last revised 9 Feb 2004 (this version, v3)]
Title:A lower bound for periods of matrices
View PDFAbstract: For a nonsingular integer matrix A, we study the growth of the order of A modulo N. We say that a matrix is exceptional if it is diagonalizable, and a power of the matrix has all eigenvalues equal to powers of a single rational integer, or all eigenvalues are powers of a single unit in a real quadratic field.
For exceptional matrices, it is easily seen that there are arbitrarily large values of N for which the order of A modulo N is logarithmically small. In contrast, we show that if the matrix is not exceptional, then the order of A modulo N goes to infinity faster than any constant multiple of log N.
Submission history
From: Zeev Rudnick [view email][v1] Fri, 12 Sep 2003 15:04:15 UTC (8 KB)
[v2] Fri, 12 Dec 2003 14:38:03 UTC (9 KB)
[v3] Mon, 9 Feb 2004 16:56:14 UTC (9 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.