Mathematics > Algebraic Topology
[Submitted on 19 Jan 2007 (v1), last revised 15 May 2008 (this version, v4)]
Title:Towards a homotopy theory of process algebra
View PDFAbstract: This paper proves that labelled flows are expressive enough to contain all process algebras which are a standard model for concurrency. More precisely, we construct the space of execution paths and of higher dimensional homotopies between them for every process name of every process algebra with any synchronization algebra using a notion of labelled flow. This interpretation of process algebra satisfies the paradigm of higher dimensional automata (HDA): one non-degenerate full $n$-dimensional cube (no more no less) in the underlying space of the time flow corresponding to the concurrent execution of $n$ actions. This result will enable us in future papers to develop a homotopical approach of process algebras. Indeed, several homological constructions related to the causal structure of time flow are possible only in the framework of flows.
Submission history
From: Philippe Gaucher [view email][v1] Fri, 19 Jan 2007 18:49:28 UTC (31 KB)
[v2] Tue, 20 Feb 2007 18:56:51 UTC (33 KB)
[v3] Wed, 9 Apr 2008 14:30:46 UTC (36 KB)
[v4] Thu, 15 May 2008 09:35:15 UTC (37 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.