Mathematics > Statistics Theory
[Submitted on 11 Mar 2007]
Title:Case-Control Survival Analysis with a General Semiparametric Shared Frailty Model - a Pseudo Full Likelihood Approach
View PDFAbstract: In this work we deal with correlated failure time (age at onset) data arising from population-based case-control studies, where case and control probands are selected by population-based sampling and an array of risk factor measures is collected for both cases and controls and their relatives. Parameters of interest are effects of risk factors on the hazard function of failure times and within-family dependencies of failure times after adjusting for the risk factors. Due to the retrospective nature of sampling, a large sample theory for existing methods has not been established. We develop a novel estimation techniques for estimating these parameters under a general semiparametric shared frailty model. We also present a simple, easily computed, and non-iterative nonparametric estimator for the cumulative baseline hazard function. A rigorous large sample theory for the proposed estimators of these parameters is given along with simulations and a real data example illustrate the utility of the proposed method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.