Mathematics > Analysis of PDEs
[Submitted on 12 Mar 2007]
Title:Resolvent at low energy and Riesz transform for Schroedinger operators on asymptotically conic manifolds. II
View PDFAbstract: Let $(M^\circ, g)$ be an asymptotically conic manifold, in the sense that $M^\circ$ compactifies to a manifold with boundary $M$ in such a way that $g$ becomes a scattering metric on $M$. A special case of particular interest is that of asymptotically Euclidean manifolds, where $\partial M = S^{n-1}$ and the induced metric at infinity is equal to the standard metric. We study the resolvent kernel $(P + k^2)^{-1}$ and Riesz transform of the operator $P = \Delta_g + V$, where $\Delta_g$ is the positive Laplacian associated to $g$ and $V$ is a real potential function $V$ that is smooth on $M$ and vanishes to some finite order at the boundary.
In the first paper in this series we made the assumption that $n \geq 3$ and that $P$ has neither zero modes nor a zero-resonance and showed (i) that the resolvent kernel is conormal to the lifted diagonal and polyhomogeneous at the boundary on a blown up version of $M^2 \times [0, k_0]$, and (ii) the Riesz transform of $P$ is bounded on $L^p(M^\circ)$ for $1 < p < n$, and that this range is optimal unless $V \equiv 0$ and $M^\circ$ has only one end. In the present paper, we perform a similar analysis assuming again $n \geq 3$ but allowing zero modes and zero-resonances. We find the precise range of $p$ for which the Riesz transform (suitably defined) of $P$ is bounded on $L^p(M)$ when zero modes (but not resonances, which make the Riesz transform undefined) are present. Generically the Riesz transform is bounded for $p$ precisely in the range $(n/(n-2), n/3)$, with a bigger range possible if the zero modes have extra decay at infinity.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.