Nonlinear Sciences > Chaotic Dynamics
[Submitted on 19 Apr 2002]
Title:To what extent can dynamical models describe statistical features of turbulent flows?
View PDFAbstract: Statistical features of "bursty" behaviour in charged and neutral fluid turbulence, are compared to statistics of intermittent events in a GOY shell model, and avalanches in different models of Self Organized Criticality (SOC). It is found that inter-burst times show a power law distribution for turbulent samples and for the shell model, a property which is shared only in a particular case of the running sandpile model. The breakdown of self-similarity generated by isolated events observed in the turbulent samples, is well reproduced by the shell model, while it is absent in all SOC models considered. On this base, we conclude that SOC models are not adequate to mimic fluid turbulence, while the GOY shell model constitutes a better candidate to describe the gross features of turbulence.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.